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In this work, an efficient strategy was presented to search drug leads for human immuno-
deficiency virus type 1 reverse transcriptase (HIV-1 RT) using hierarchical database screenings,
which included a pharmacophore model, multiple-conformation rigid docking, solvation docking,
and molecular mechanics-Poisson-Boltzmann/surface area (MM-PB/SA) sequentially. En-
couraging results were achieved in searching a refined available chemical directory (ACD)
database: the enrichment factor after the first three filters was estimated to be 25-fold; the
hit rate for all the four filters was predicted to be 41% in a control test using 37 known HIV-1
non-nucleoside reverse transcriptase inhibitors; 10 out of 30 promising solvation-docking hits
had MM-PB/SA binding free energies better than -6.8 kcal/mol and the best one, HIT15, had
-17.0 kcal/mol. In conclusion, the hierarchical multiple-filter database searching strategy is
an attractive strategy in drug lead exploration.

Introduction

Lead discovery is one of the most important compo-
nents in rational drug design. There are two basic
approaches to identify drug leads, which are de novo
design and database screening. De novo design is aimed
to design novel compounds that have electrostatic and
hydrophobic properties complementary to those of the
target. Thus, it requires 3D structures of drug targets.
On the other hand, database screening applies filters
to identify potential drug leads from real or virtual
databases. Although de novo design is more attractive
in concept, database screening is still the dominating
approach in drug lead exploration. All database screen-
ing approaches fall into two categories: the query-based
and the scoring-function-based approaches. Typically,
the scoring-function-based approaches, but not neces-
sarily the query-based approaches, require 3D struc-
tures of the drug targets.

Query-based approaches apply search queries to filter
databases. Queries can be as simple as molecular
weights or numbers of hydrogen-bond donors and ac-
ceptors or as complicated as 2D or 3D molecular
structures and pharmacophore models. A well-known
filter in this category is Lipinski’s “rule-of-five”, which
states that a good drug candidate should have a molec-
ular weight smaller than 500, a calculated log P smaller
than 5.0, and numbers of hydrogen-bond donors and
acceptors less than 5 and 10, respectively.1 It has been
estimated that roughly 10% of compounds that enter
development eventually become marketed drugs and
40% of compounds fail due to poor pharmacokinetic

properties.2 Recently, more and more attention has been
focused on the development of drug leads that have not
only good drug potencies and selectivity but also good
ADMET (absorption, distribution, metabolism, excre-
tion, and toxicity) and PK (pharmacokinetics) proper-
ties. It is realized that a “parallel model” of lead
optimization, which optimizes drug potencies and
ADMET/PK properties simultaneously, is superior to
the traditional serial-cyclical model of lead optimiza-
tion.3 As a result, it is important to develop reliable
ADMET/PK models and apply them as queries in
database screening. Query-based database screenings
are typically efficient and less computer resource de-
manding, since they do not require the 3D structures
of drug targets. However, inappropriate queries may
generate too many or too few hits.

Scoring-function-based approaches apply target func-
tions to select hits. The widely used target functions
include those that calculate the free energy of an
inhibitor binding to a receptor. The 3D structure of the
receptor, either from X-ray, NMR, or a homology model,
is the prerequisite of this kind of database search. The
most rigorous and accurate methods of calculating the
free energy of an inhibitor binding to a receptor are free
energy perturbation (FEP) and thermodynamic integra-
tion (TI). However, the two methods are extremely time-
consuming and not appropriate for database screenings.
Recently, several alternative methods, which include the
linear interaction energy (LIE) method,4,5 solvation
docking,6 MM-GB/SA (generalized Born/solvent acces-
sible surface area),7 and MM-PB/SA,8-11 have been
developed to estimate binding free energies in fast and
practical ways. LIE is based on a linear response
hypothesis, which assume that the free energy of an
inhibitor binding to a receptor is the combination of the
weighted electrostatic and van der Waals interaction
energies between the inhibitor and receptor. The solv-

* To whom correspondence should be addressed. Tel:
(713) 578-6649. Fax: (713) 578-6720. E-mail: jwang@encysive.com.

† Encysive Pharmaceuticals Inc.
‡ University of California.
§ Current address: PTC Therapeutics Inc., 100 Corporate Court,

South Plainfield, NJ 07080.
| Deceased.

2432 J. Med. Chem. 2005, 48, 2432-2444

10.1021/jm049606e CCC: $30.25 © 2005 American Chemical Society
Published on Web 02/19/2005



ation docking, which was initially proposed by Zou et
al.,6 is similar to LIE, except that the solvation energy
is estimated using GB/SA. In contrast to LIE and
solvation docking shown in formula I, MM-GB/SA and
MM-PB/SA apply a thermodynamic cycle to calculate
the binding free energy of A + B f AB.

∆Ggas is the interaction energy between A and B in
the gas phase; ∆GA

solv, ∆GB
solv, and ∆GAB

solv are the
solvation free energies of A, B, and AB with GB/SA or
PB/SA models, respectively; ∆Gbinding, the binding free
energy, is calculated with formulas II-IV. To facilitate
the absolute and relative binding free energy calcula-
tions, ∆Einter is typically neglected with the assumption
that the intramolecular energy of the ligand does not
change significantly upon binding. In contrast to the
linear interaction energy method, MM-GB/SA and
MM-PB/SA do not apply empirical parameters at all
for free energy calculations, which makes them attrac-
tive methods for directly estimating the binding free
energies. Recently, we successfully applied molecular
docking combined with MM-PB/SA to determining the
binding mode of HIV-1 RT/efavirenz.9 In this blind test,
not only was the calculated binding free energy in good
agreement with the experiment, but the crystal struc-
ture, which was released after our paper had been
submitted, was also well-predicted by the combination
of molecular docking and molecular dynamic simula-
tions (the rmsd of the non-nucleoside reverse tran-
scriptase inhibitor and 54 R-carbons of the key residues
around the binding site was 1.1 Å). If the solvation
energies (∆GAB

solv, ∆GA
solv, and ∆GB

solv) and entropy
(T∆S) contributions are omitted, formula II becomes
formula V. The scoring function described by formula
V, which only considers the gas-phase intermolecular
energy (∆Eelec+∆Evdw) between the inhibitor and the
receptor, is widely used in docking programs12,13 because
of its simplicity. In this study, one of our screening
filters, rigid docking, also applied this scoring function.

However, a good scoring function is only part of the
story. Conformational sampling also plays an important
role in calculating the binding free energy accurately
and efficiently. There are a variety of sampling protocols
available, including molecular dynamics and Monte
Carlo (MC) simulations, genetic algorithms, and simu-
lated annealing. The conformational flexibilities of an
inhibitor and a receptor can be taken into account at

hierarchal levels, ranging from the highly expensive
level, with both the inhibitor and receptor being flexible,
to the less costly, which makes the inhibitor flexible but
the receptor rigid, to the least expensive one, with both
the inhibitor and receptor being rigid.

What is the state of the art in applying the above
scoring functions and sampling protocols in binding free
energy calculations? A wise and often necessary strategy
is one that employs the rapid and lower level methods
(such as rigid docking using the scoring function de-
scribed by formula V) at the beginning and turns to the
more accurate and quantitative methods (such as
MM-PB/SA analysis sampled by molecular dynamics
simulations) at the end. Naturally, it is wise to combine
expensive sampling protocols, such as MD and MC
simulations, with expensive energy calculation ap-
proaches such as free energy perturbations, TI, and
MM-PB/SA.

Most docking programs apply much simpler scoring
functions and only the flexibilities of inhibitors are
taken into account. There are three different approaches
to consider the flexibility of an inhibitor. The commonly
used approach is to take the torsional angles of rotatable
bonds in a ligand as variables in addition to the three
translation vectors and three Euler angles in docking
optimizations. The flexibility of a ligand can also be
taken into account implicitly through anchor docking
followed by molecular fragment growing up and as-
sembling. In the third approach, a set of diverse
conformations of a ligand is first generated and then
rigid docking is performed for each conformation, and
the one that gives the best docking score is taken as
the “active” conformation of the ligand. One often needs
to find a balance between accuracy and efficiency,
because the more physical a scoring function is and the
more conformational space it is sampled, the more time-
consuming a database search will be.

HIV-1 reverse transcriptase is an important target
in AIDS-related drug design. The main biological role
of HIV-1 RT is to transcribe the viral RNA into a double-
stranded DNA. This is a crucial step in the life cycle of
HIV-1. The viral nucleic acid is accommodated in a large
groove through the enzyme. At one point in this groove,
the dNTP site is located, formed partly by a nucleic acid
template primer and partly by residues in the enzyme;
this is the site of action of phosphorylated nucleoside
RT inhibitors. In addition, HIV-1 RT has an allosteric
site, which is colocated in the p66 palm subdomain but
distinct from the dNTP binding site. The inhibitors that
target the allosteric site are so-called non-nucleoside
reverse transcriptase inhibitors (NNRTIs). We have
reported the mechanism of allosteric binding elsewhere
from a conformation point of view.9 Recently several
NNRTIs have been approved by FDA as anti-AIDS
drugs, which include nevirapine, delavirdine, and
efavirenz.14-17

In recent years, many crystal structures of HIV-1 RT
in complex with NNRTIs have been solved18-29 and tens
of NNRTIs have been identified. This makes HIV-1 RT
a good target to test drug lead exploration strategies.
In this study, we have applied a set of hierarchical
filters, from a simple query-based pharmacophore model
to a much more promising free-energy-based scoring
function, MM-PB/SA, to screen the ACD database for

∆Gbinding ) R∆Gelec + â∆Evdw + γ∆SAS (I)

) ∆Hgas - T∆S + (∆GAB
PB/GBSA - ∆GA

PB/GBSA -

∆GB
PB/GBSA) (II)

∆Hgas ≈ ∆Egas ) ∆Einternal + ∆Eelectrostatic + ∆Evdw

(III)
∆GPBSA/GBSA ) ∆GPB/GB + ∆GSA (IV)

∆Gbinding ) ∆Eelectrostatic + ∆Evdw (V)

Hierarchical Database Screenings for HIV-1 RT Journal of Medicinal Chemistry, 2005, Vol. 48, No. 7 2433



drug leads for HIV-1 RT. This virtual screening strategy
is intended to efficiently and reliably condense “real
inhibitors” in a database rather than to replace the true
high throughput (HTS) screening. The combination of
virtual and real HTS screenings can significantly im-
prove the successful rate of finding real inhibitors in a
database with less time and lower financial cost. It is
notable that this protocol can be applied to other
systems only if the receptor structures are available.

To evaluate the performance of a database screening,
hit rate (HR) and enrichment factor (EF) are defined
in formulas VI and VII, where n is the number of
compounds in the whole database that includes q known
inhibitors. Suppose m hits, which include p known
inhibitors, passed one or multiple screening filters; HR
is then defined as the ratio of p to q (formula VI) and
EF is the ratio of pm to pn, where pm and pn are
probabilities of finding a real inhibitor among the hits

(p/m) and in the whole database (q/n), respectively
(formula VII).

Computational Methods
Filter I;A Pharmacophore Model. Thirty-seven

known HIV-1 NNRTIs binding at the allosteric site have
been selected as a control set to evaluate the perfor-
mance of the database screening strategy.18,20,26,28-45

The experimental binding free energies of those NNRTIs
are listed in Table 1 and the structures are shown in
Figure 1. The crystal structures of HIV-1 RT in complex
with 19 out of the 37 NNRTIs (Compounds 1-19 in
Table 1) were superimposed on a crystal structure of

Table 1. A List of Known HIV-1 NNRTIs

no.
compd
abbrev comp name/code

PDB
codea

IC50
(µM)b

∆Gexpt
c

(kcal/mol) ref

1 AAA 2,6-dibromo-R-APA; R95845 1HNI 0.42 -8.7 29
2 AAP 2,6-dichloro-R-APA; R90385 1VRU 0.1 -9.5 20
3 EFZ L-743726; DMP-266; efavirenz 1FK9

1FKO
1IKW
1IKV
1JKM

0.00293 -11.6 30

4 HBY HBY 097; quinoxaline derivative 1BQM 0.006 -11.2 31
5 HEF HEPT; 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine 1RVM

1RTI
7 -7.0 32

6 IIN NSC119833; 2-methyl-3-amino-3-phenylisoindol-1-one 1RVN 10 -6.8 23
7 MKC emivirine; coactinon; MKC-442; I-EBU; HEPT derivative 1RT1 0.008 -11.0 24
8 NEV (R)-nevirapine; BI-RG-587 1VRT

3HVT
0.2 -9.1 29

9 SPP S-cysteinesulfinic acid; S-sulfinocysteine;
1-(5-methansulfonamido-1H-indol-2-ylcarbonyl)-
4-[methylaminopyidinyl]piperazine

1KLM 1.1 -8.1 33

10 TB9 9-chloro-TIBO; R82913 1TVR
1RVQ

0.033 -10.6 26

11 TBO 8-chloro-TIBO; R86183 1UWB
1HNV

0.003 -11.9 26

12 THI thiazolo-3-phenylisoin dol-1-one 1RVP 0.016 -10.70 34
13 TNK TNK-651; 6-benzyl-1-benzyloxymethyl-5-isopropyluracil 1RT2 0.006 -11.2 24
14 U05 1051U91 1RT3 0.4 -8.7 20
15 UC1 UC-781 1RT4 0.009 -11.0 28
16 UC2 UC-10; carboxanilide derivative 1RT5 0.142 -9.3 28
17 UC3 UC-38 1RT6 0.029 -10.3 28
18 UC4 UC-84; carboxanilide derivative 1RT7 0.042 -10.1 28
19 UKC UK-129485; imidazodipyridodiazepine 1RVR 0.19 -9.23 23
20 ADA ADAM analogue; alkenyldiarylmethane analog 16.0 -6.5 35
21 ATA aurintricarboxylic acid; Dupont ATA; Dupont DA 639; SD-095345 5.0 -7.2 36
22 DAB DABO; 6-benzyl-5-methyl-2-(cyclohexyloxy)pyrimidin-4-one 4.7 -7.3 37
23 D83 DPC083; DMP-266 derivative 0.0004 -12.8 d
24 D61 DPC961; DMP-266 derivative 0.00036 -12.9 d
25 EEB EEBU; HEPT derivative; MKC-442 derivative 0.041 -10.1 39
26 HES HEPT-S; 1-[2-hydroxyethoxymethyl]-6-phenylthiothymine 1.6 -7.9 38
27 HET HEPT and MKC-442 derivatives 0.0027 -11.7 39
28 INO inophyllum B 1.4 -8.0 40
29 L69 L-697639; 2-pyridinone-3-benzoxazole MeNH derivative 0.05 -10.0 41
30 PE1 trovirdine; LY-300046; PETT derivative 0.02 -10.5 42
31 PE2 PETT Cl, F derivative 0.05 -10.0 42
32 PE3 PETT derivative 0.01 -10.9 42
33 PE4 PETT derivative; LY 73497 1.3 -8.0 42
34 R14 R14458; TIBO analogue 62 -5.7 43
35 R87 R87232; R-APA derivative 0.033 -10.2 44
36 R88 R88703; phNH-phAcNH derivative; R-APA deriv 0.026 -10.3 44
37 S11 capravirine; S1153 0.0031 -11.6 45

a Crystal structures of HIV-1 RT complexes were available for no. 1-19. b IC50 is defined as the effective concentration that inhibits
50% of viral production, 50% of viral infectivity, or 50% of the virus-induced cytopathic effect. IC50 is also commonly referred to as ED50
or EC50. If more than one IC50 value is available, the MT-4 cell and HIV-1 (IIIB) strain’s values are first adopted. c Experimental binding
free energies were estimated using IC50.

HR ) p/q (VI)

EF )
pm

pn
) HR × n

m
(VII)
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Figure 1. The molecular structures of the known NNRTIs with (a) and without (b) crystal structures in complex with HIV-1 RT.
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HIV-1 RT/TBO (PDB code 1uwb),18 which was applied
in generating the spheres (the so-called negative images
of the receptor, where the inhibitor atoms will reside)
and calculating the energetic potentials in the sequen-
tial rigid and solvation docking studies. Only the main
chain atoms of key residues around the allosteric
binding site were considered, which are residues
92-110, 178-191, 227-236, 316-319 of chain A and
residue 138 of chain B. Figure 2 shows the superim-
posed structures of the inhibitors. The overall shape of
the inhibitors bound to the enzyme is a “butterfly” with
two wings, A and B, a head C, and a tail D. Some flexible
ligands, such as TNK and SPP, have branches sticking
out from the wings. This “butterfly” shape reflects the
overall shape of the allosteric binding site of the enzyme.
On the basis of the “butterfly” shape, we designed a
three-featured pharmacophore model shown in Figure
3. This pharmacophore model has two distinct binding
patterns that occupy one or both of the butterfly wings,
respectively.

Conformational flexible searches (CFS) were con-
ducted for both patterns to search a refined ACD
database using ISIS 2.4 of MDL Information Systems
Inc. Default parameters were applied except that the
rmsd cutoff was set to 1.0 Å and the van der Waals
energy difference was set to 10.0 kcal/mol.

Filter II;Multiple-Conformation Rigid Dock-
ing. The second filter in this database screening strat-
egy is a multiple-conformation rigid docking. All the
docking studies were carried out using DOCK4.0.12,13

The crystal structure of HIV-1 RT/8Cl-TBO (1uwb)18

was chosen to generate the spheres and to calculate
electrostatic and van der Waals potentials around the
allosteric binding site of the receptor. The solvent
accessible surface area was first generated using the
DMS program in the Midas Plus package (Computer
Graphic Laboratory, University of CaliforniasSan Fran-
cisco) after the hydrogen atoms of the receptor were
removed. The spheres, where inhibitor atoms would
occupy, were then generated using the SPHGEN module
in DOCK4.0.12,13 A cluster analysis was followed and
one cluster that had roughly 30-40 spheres around the
binding site was selected for docking. Manually insert-
ing and deleting some spheres may be necessary. To
generate the energetic potentials, hydrogen atoms of the
receptor as well as counterions were first added to make
the whole system neutral. The charges and van der
Waals parameters were taken from AMBER.46 The
electrostatic and van der Waals potentials were gener-
ated using the GRID module in DOCK4.0.

Conformational searches were carried out for the hits
of the pharmacophore model filter using the OMEGA
(optimized ensemble generation application) program
from OpenEye Scientific Software. The following are the
basic parameters that control the calculations: maxi-
mum number of searched conformations (GP_MAX-
_POP), 1000; maximum number of saved conformations
(GP_NUM_OUTPUT_CONFS), 50; energy threshold
(GP_ENERGY_WINDOW), 5.0 kcal/mol; and rmsd cut-
off (GP_RMS_CUTOFF), 1.5 Å. We believed that this
setting was adequate to generate a set of diverse low-
energetic conformations with a good balance between
conformation quality and computer time.

Figure 2. The 19 superimposed HIV-1 non-nucleoside reverse transcriptase inhibitors. The alignment of the inhibitors was
generated by superimposing the crystal structures of HIV-1 RT/NNRTIs on that of HIV-1 RT/TBO (PDB code 1uwb). Only the
main chain atoms of key residues around the allosteric binding site, namely, residues 92-110, 178-191, 227-236, 316-319 of
chain A and residue 138 of chain B, were used for superimpositions. In this figure, magenta spheres, which indicate the possible
positions occupied by potential ligand atoms, were generated using SPHGEN in the DOCK4.0 software package. Six purple spheres
were manually added in order to get a better docking performance for TNK and SPP, which have a branch sticking out from wing
B of the “butterfly”.

Figure 3. The first filtersa three-featured pharmacophore
model derived from the 19 crystal structures of HIV-1 RT in
complex with NNRTIs. In this figure, X1 represents a five- or
six-membered aromatic ring; X2 represents a five- to seven-
membered ring; and X3 can be nitrogen, oxygen, or sulfur; d1,
d2, and d3 are distances between X1 and X2, X1 and X3, and X2

and X3, respectively. Two patterns were identified and the
distance parameters are listed as the following: pattern I, d1

(4.5-6.0 Å), d2 (3.5-4.5 Å), and d3 (4.5-6.5 Å); pattern II, d1

(2.4-2.8 Å), d2 (2.5-4.5 Å), and d3 (4.0-5.5 Å).

2436 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 7 Wang et al.



Rigid docking was then performed for all the confor-
mations, and the key docking parameters are listed as
the following: maximum orientations, 1000; minimum
matching nodes, 4; maximum matching nodes, 15; no
intramolecular score; and dielectric constant (ε), 4.0.
Both the conformational searches and docking were
performed with an SGI Origin (R10000).

Filter III;Solvation Docking. On the basis of our
experience, the solvation docking parameters in formula
I may be varied from one system to another. Thus, we
set out to develop a solvation-docking model just for
HIV-1 RT in order to achieve an optimal solvation
docking performance. A training set of 12 known NNR-
TIs, which have crystal structures of HIV-1 RT com-
plexes available, was applied to derive the model. Each
molecule in the training set had an rmsd less than
3.0 Å between the docked and its own crystal structure,
and the rigid docking score was better than the thresh-
old (-24.5 kcal/mol). It is noted that the selected docked
structure is not necessarily the one that has the best
docking score. The R, â, and γ parameters in formula I
were then optimized to reproduce the experimental
binding free energies.

Solvation docking was performed for the molecules
that passed filter II using a solvation docking program
developed by Zou et al.6 This program outputs the van
der Waals energy (hydrophobic interaction) and the
screened electrostatic energy (∆Gelec

solv + ∆Eelec
MM,

polarization interaction) as well as the polar and non-
polar solvent accessible surface areas. The electrostatic
solvation energy, ∆Gelec

solv, was calculated using a
generalized Born model. Finally, the binding free ener-
gies were estimated using the derived solvation docking
model.

Filter IV;MM-PB/SA. Only the known HIV-1
NNRTIs and the 30 most promising hits that passed
the previous filters were screened by this filter, subject
to our limited computational resources. Unlike the first
three filters for which only the ligand flexibility was
taken into account, this last filter applied MD simula-
tions to sample the conformational space of both the
inhibitor and the receptor. For each molecule, a 20 Å
water cap was added around the allosteric binding site;
MD simulations were then carried out at 300 K with a
time step of 2.0 fs, the nonbonded cutoff being set to
9.0 Å. The inhibitor, the water molecules, and the
receptor residues that are within 20 Å of the mass
center of the inhibitor were allowed to move during the
belly MD simulations. After equilibration for 50 ps, 20
snapshots were collected for postprocessing at a fre-
quency of every 1 ps. All the MD simulations were
carried out with the SANDER module in AMBER7.046

using the PARM99 force field47 described by formula
VIII.

For each snapshot, MM-PB/SA analysis was per-
formed to calculate the binding free energy. The inhibi-
tor-receptor interaction energies (∆Eelectrostatic, ∆Evdw)

were calculated with the ANAL module in the AM-
BER7.0 package.46 As to the solvation energies, the
electrostatic part (reaction field energies, ∆GPB) was
calculated with DELPHI48,49 using the PARSE radii.50

The nonpolar contributions (∆GSA) were estimated using
a simple empirical formula:50 ∆GSA ) σA + b, where A
is the solvent-accessible surface area that was estimated
using the MSMS program.51 σ and b are empirical
constants, and in this work 0.0054 and 0.92 kcal/mol
were used, respectively. To speed up the solvation
energy calculations, only the residues within 30 Å of
the mass center of the inhibitor were used for the PBSA
calculations. The entropy (T∆S) was estimated through
normal-mode analysis using the NMODE module in the
AMBER package. Considering that this type of calcula-
tion is extremely time-consuming for large systems, only
residues within 12 Å of the mass center of the inhibitor
(including the ligand, but excluding the water mol-
ecules) were used for the normal-mode analysis. A
thorough minimization was first performed with a
distance dependent dielectric constant (ε ) 4Rij) prior
to the normal-mode analysis.

Results and Discussion

Filter I;Pharmacophore Model. Superimposi-
tions were carried out for the crystal structures of
19 HIV-1 RT/NNRTIs to that of HIV-1 RT/TBO (1uwb).
The average rmsd is 0.86 Å for the 19 NNRTIs. The
aligned non-nucleoside reverse transcriptase inhibitors
are shown in Figure 2 and the root-mean-square devia-
tions are listed in Table 2. On the basis of the “butterfly”
shape, a three-featured pharmacophore model was
designed as shown in Figure 3. The first feature, X1, is
a five- or six-membered aromatic ring; the second
feature, X2, is a five- to seven-membered ring, which
can either be aromatic or aliphatic; the third feature,
and X3, is a hydrophilic center that can be nitrogen,
oxygen, or sulfur. d1, d2 and d3 are distances between
X1 and X2, X1 and X3, X2 and X3, respectively. There are
two patterns of this pharmacophore model. For pattern
I, d1, d2, and d3 are 4.5-6.0 Å, 3.5-4.5 Å, and 4.5-
6.5 Å, respectively. For pattern II, d1, d2, and d3 are
2.4-2.8 Å, 3.5-4.5 Å, and 4.0-5.5 Å, respectively. All
the 37 known HIV-1 NNRTIs could match at least one
pattern of this pharmacophore model. To be a little bit
conservative, it was assumed that the hit rate of this
filter was 95%. A total of 40 000 compounds (35 000 for

Epair ) ∑
bonds

kr(r - req)
2 + ∑

angles
kθ(θ - θeq)

2 + )

∑
dihedrals

vn

2
[1 + cos(nφ - γ)] + ∑

i<j[ Aij

Rij
12

-
Bij

Rij
6

+
qiqj

εRij ]
(VIII)

Table 2. Least-Squares Fittings of HIV-1 RT/TBO (1uwb) to
the Other 19 HIV-1 RT/NNRTIs Crystal Structuresa

no.
compd
abbrev

PDB
code

rmsd
(Å) ref no.

compd
abbrev

PDB
code

rmsd
(Å) ref

1 AAA 1HNI 0.639 19 11 TBO 1HNV 0.39 18
2 AAP 1VRU 0.647 20 12 THI 1RVP 1.18 b
3 EFZ 1FK9 0.711 21 13 TNK 1RT2 0.875 24
4 HBY 1BQM 0.796 22 14 U05 1RT3 0.799 27
5 HEF 1RTI 0.854 20 15 UC1 1RT4 0.837 28
6 IIN 1RVN 1.18 b 16 UC2 1RT5 0.921 28
7 MKC 1RT1 1.09 24 17 UC3 1RT6 0.910 28
8 NEV 1VRT 0.641 20 18 UC4 1RT7 0.927 28
9 SPP 1KLM 0.967 25 19 UKC 1RVR 1.20 b
10 TB9 1TVR 0.798 26

a Alignments were performed only for the main chain atoms
around the allosteric binding site: residues 92-110, 178-191,
227-236, 316-319 of chain A and residue 138 of chain B. b Proc.
Natl. Acad. Sci. U.S.A. 1994, 91, 3911.
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pattern I and 5000 for pattern II) out of 150 000 passed
this filter. The enrichment factor for this step was 3.56
according to formula VII.

Our three-featured pharmacophore model was con-
ceived from the superimposed crystal structures of
protein complexes. In other cases when there are much
fewer or even no crystal structures available, one may
build up pharmacophore models purely based on the
known inhibitors. The following are some widely used
software packages to generate pharmacophore models:
CATALYST, of Accelrys Inc., and DISCO, DISOTECH,
and GASP, of Tripos Inc. Pharmacophore database
searches are typically very fast as long as the adequate
databases have been preconstructed. As to our case,
database searching was performed with ISIS and the
CPU time was a couple of hours for each pattern.

Filter II;Multiple Conformation Rigid Dock-
ing. Conformational searches were performed with the
OMEGA program for the 40 000 hits from the first filter.
On average, 30 conformations were generated per
molecule. More than 1 million conformations in total
were subjected to rigid docking. The transparent solvent
accessible surface of the key residues of HIV-1 RT
(1uwb) around the allosteric binding site is shown in
Figure 4. The non-nucleoside reverse transcriptase
inhibitor 8Cl-TIBO (in short TBO, 11 in Table 1) is
colored in yellow. The magenta balls, which were
generated by SPHGEN in DOCK4.0, specify where the
inhibitor atoms might reside. The rigid docking scores
for the known NNRTIs and the 30 most promising hits,
respectively, are listed in Tables 3 and 4. The hit rate
of this step was estimated as 76% with a docking score
criterion of -24.5 kcal/mol. Some 16 000 compounds out
of 40 000 had at least one conformation pass this filter.
The enrichment factor for this step was 1.89.

In Figure 5, a plot of the experimental binding free
energies versus the docking scores is shown for 28
known HIV-1 NNRTIs that passed the rigid docking
filter. The standard deviation was 3.3 kcal/mol and the

regression coefficient was 0, which implies that there
is no statistical correlation between the rigid docking
scores and the experimental binding free energies. The
lack of statistical correlation is not a surprise at all
given the fact that the rigid docking scoring function
completely neglects the contributions of solvation energy
and entropy. In addition, the receptor is being totally
frozen in the docking studies.

How well did the multiple-conformation rigid docking
perform in predicting the structures of the HIV-1 RT/
NNRTI complex? Sixteen out of the 19 NNRTIs for
which crystal structures of HIV-1 RT complexes are
available successfully passed the rigid docking criterion.
For each inhibitor that survived the filter, its own
crystal structure was superimposed on that of HIV-1
RT/TBO (only the key residues around the binding site
were considered). Then the rmsd of the best scored
docking conformation to the crystal structure was
calculated directly without fitting. The average and root-
mean-square deviation of the rmsd for the 16 known
HIV-1 NNRTIs were 3.2 and 3.4 Å, respectively (Table
5). It is still a considerable challenge to accurately model
a protein complex (rmsd of less than 2.0 Å) using a

Figure 4. The transparent solvent accessible surface area of
the key residues of HIV-1 RT (1uwb) around the allosteric
binding site: residues 92-110, 178-191, 227-236, 316-319
of chain A and residue 138 of chain B. In this figure, the
inhibitor, TBO (11 in Table 1), is colored in yellow. The
magenta spheres, which indicate the possible positions to be
occupied by potential ligand atoms, were generated using the
SPHGEN program in the DOCK4.0 software package.

Table 3. Results of Multiple-Conformation Rigid Docking,
Solvation Docking, and MM-PB/SA for the Known HIV-1
NNRTIsa

no.
compd
abbrev

rigid
docking

score
(kcal/mol)

solvation
docking

score
(kcal/mol)

MM-
PB/SA

(kcal/mol)

experimental
binding free

energy
(kcal/mol)

1 AAA -29.2 -8.9 -7.2 -8.7
2 AAP -28.7 -9.3 -7.2 -9.5
3 EFZ -30.2 -9.8 -13.2 -11.6
4 HBY -26.7 -10.4 -9.6 -11.2
5 HEF -32.5 -9.8 -7.5 -7.0
6 IIN -26.2 fail -6.8
7 MKC -24.7 fail -10.7
8 NEV -31.0 -9.9 -6.8 -9.1
9 SPP fail -8.1
10 TB9 -24.2 -9.6 -11.6 -10.6
11 TBO fail -12.0 -11.9
12 THI -28.6 -8.9 -7.6 -10.6
13 TNK fail -8.2 -11.2
14 U05 -26.7 -8.8 -3.4 -8.7
15 UC1 -30.2 -9.7 -11.8 -11.0
16 UC2 -32.2 -9.8 -12.8 -9.3
17 UC3 -32.4 -10.8 -7.2 -10.3
18 UC4 -30.0 -10.0 -9.7 -10.1
19 UKC -36.3 -10.9 -11.2 -9.2
20 ADA fail -6.5
21 ATA fail -7.2
22 DAB -30.9 -9.4 -6.5 -7.3
23 D61 -32.5 -10.6 -14.8 -12.9
24 D83 -30.7 -9.6 -14.4 -12.8
25 EEB -27.7 -10.0 3.0 -10.1
26 HES -29.4 -9.1 -6.0 -7.9
27 HET fail -6.5
28 INO fail -8.0
29 L69 fail -10.0
30 PE1 -25.6 fail -10.5
31 PE2 -26.8 -9.1 -7.3 -10.0
32 PE3 -24.0 fail -10.9
33 PE4 -27.5 -9.4 3.5 -8.0
34 R14 -28.2 -8.8 2.2 -5.7
35 R87 -33.4 fail -10.2
36 R88 -25.4 fail -10.3
37 S11 fail -11.6

a Crystal structures of HIV-1 RT complexes were available for
no. 1-19. Inhibitors that failed to pass the rigid docking filter
(-24.5 kcal/mol), solvation docking filter (-8.8 kcal/mol), or MM-
PB/SA filter (-6.8 kcal/mol) are indicated with “fail”.
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receptor structure other than the one that forms the
complex, even though it is a crystal structure.

What is the key to achieving a good docking perfor-
mance? First of all, a set of good spheres that represent
the active site is crucial. Those spheres should be evenly
(not exactly) distributed around the binding site and
some of them should occupy the atomic positions of the
cocrystallized inhibitor. One may manually insert or
delete some spheres if needed. Second, a high-quality
conformational set is important in multiple-conforma-
tion rigid docking studies. A good conformational set

should be sufficiently diverse to cover the whole con-
formational space and the structures energetically
favorable. In addition, the intramolecular energies
(∆Einternal) of an inhibitor, which were not considered
in this work, may be important, and it will be a good
idea to add this term to the scores calculated with
formula V in the future.

Rigid docking with DOCK4.0 is not very time de-
manding, and the typical process time for each confor-
mation is within 10 s on a single-process SGI Origin
(R10000).

Filter III;Solvation Docking. In Table 6, the three
energetic terms (∆Gelec, ∆Evdw and ∆SAS) in formula I
are listed for 12 known NNRTIs that have crystal
structures for HIV-1 RT complexes. All 12 inhibitors
have not only good docking scores (<-24.5 kcal/mol),
but also high-quality docked structures (rmsd < 3.0 Å).
The coefficients, R, â, and γ in formula I, were deter-

Table 4. Results of Multiple-Conformation Rigid Docking,
Solvation Docking, and MM-PB/SA for the Top 30 Solvation
Docking Hitsa

no. compd abbrev

rigid
docking

score (kcal/mol)

solvation
docking

score (kcal/mol)

MM-
PB/SA

(kcal/mol)

1 HIT01 -33.1 -8.9 -9.6
2 HIT02 -30.1 -9.0 0.4
3 HIT03 -31.8 -9.3 -0.8
4 HIT04 -28.7 -9.5 -2.5
5 HIT05 -35.7 -8.9 -5.4
6 HIT06 -30.0 -9.8 0.3
7 HIT07 -31.9 -9.2 -3.3
8 HIT08 -31.8 -9.8 -8.6
9 HIT09 -37.8 -9.6 -0.3
10 HIT10 -32.6 -9.8 -0.7
11 HIT11 -34.2 -9.2 5.3
12 HIT12 -34.8 -9.2 -6.6
13 HIT13 -35.2 -9.2 -9.5
14 HIT14 -34.5 -10.0 -10.8
15 HIT15 -25.7 -10.2 -17.7
16 HIT16 -30.6 -9.9 -4.0
17 HIT17 -31.6 -10.0 -3.6
18 HIT18 -33.8 -9.9 -0.3
19 HIT19 -35.6 -10.6 -5.1
20 HIT20 -27.2 -9.6 -3.1
21 HIT21 -32.6 -10.8 -2.2
22 HIT22 -31.8 -10.7 -7.1
23 HIT23 -37.6 -9.6 -8.1
24 HIT24 -29.3 -9.6 -1.9
25 HIT25 -35.2 -11.1 -1.8
26 HIT26 -28.5 -10.0 -7.9
27 HIT27 -31.4 -9.9 -6.8
28 HIT28 -30.9 -11.0 -8.1
29 HIT29 -27.5 -8.8 2.7
30 HIT30 -36.4 -9.5 1.4

a Promising solvation docking hits that passed the MM-PB/
SA filter are shown in bold.

Figure 5. Plot of the experimental binding free energies
versus docking scores for the 29 known NNRTIs that passed
the rigid docking filter. The regression coefficient was 0.0 and
the standard deviation was 3.3 kcal/mol.

Table 5. Root Mean Square Deviations of the Rigid Docking,
Solvation Docking, and Molecular Dynamic Simulations
Structures of 16 NNRTIs Compared to the Crystal Structuresa

no.
compd
abbrev

rigid
docking

(Å)

solvation
docking

(Å)
MD
(Å)

1 AAA 4.2 4.4 4.4
2 AAP 4.0 4.2 3.7
3 HBY 1.5 1.5 1.4
4 HEF 3.6 3.6 2.9
5 IIN 3.1
6 MKC 5.8
7 NEV 1.3 1.3 2.8
8 EFZ 3.0 3.0 1.1
9 TB9 2.1 2.1 1.4
10 THI 4.6 5.6 5.2
11 U05 3.5 3.6 3.9
12 UC1 1.6 1.1 0.8
13 UC2 1.2 1.4 1.2
14 UC3 5.3 1.7 2.4
15 UC4 3.9 2.9 2.8
16 UKC 1.7 1.7 1.2

no. of data 16 14 14
av deviations 3.2 2.7 2.5

rms deviations 3.4 3.0 2.8
a TBO, TNK, and SPP were omitted since they did not meet

the rigid docking criterion.

Table 6. A List of the Three Energy Terms of Solvation
Docking for 12 HIV-1 NNRTIs That Were Applied To Derive
the Solvation Docking Modela

no.
compd
abbrev

rmsd
(Å)

∆Gelec
(kcal/
mol)

∆Evdw
(kcal/
mol)

∆SAS
(Å2)

∆Gcalc
(kcal/
mol)

∆Gexpt
(kcal/
mol)

1 EFZ 3.0 1.9 -33.7 -890 -9.8 -11.6
2 HBY 1.5 3.6 -39.3 -882 -10.4 -11.2
3 HEF 2.7 14.2 -39.4 -863 -8.5 -7.0
4 IIN 2.7 7.6 -29.2 -914 -8.1 -6.8
5 NEV 1.3 1.4 -35.0 -852 -9.9 -9.1
6 TB9 2.1 5.3 -38.9 -793 -9.6 -10.6
7 U05 3.5 11.6 -36.6 -795 -8.1 -8.7
8 UC1 2.4 9.2 -35.3 -905 -8.9 -11.0
9 UC2 1.2 9.2 -42.7 -811 -9.7 -9.3
10 UC3 1.6 -3.0 -29.7 -867 -9.9 -10.3
11 UC4 1.9 4.2 -34.7 -892 -9.6 -10.1
12 UKC 1.8 1.8 -35.7 -881 -10.2 -9.2

a All 12 NNRTIs passed the rigid docking filter (-24.5 kca/mol),
and the rmsd of the docked structures are within 3.0 Å to their
individual crystal structures. Coefficients of electrostatic (R), van
der Waals (â), and solvent accessible surface area (γ) energy terms
are 0.1736, 0.1709, and 0.0049, respectively. The average unsigned
error and root-mean-square error between ∆Gcalc and ∆Gexpt are
1.03 and 1.16 kcal/mol, respectively.
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mined by a least-squares fitting in order to reproduce
the experimental binding free energies. The solvation-
docking model (R ) 0.1736, â ) 0.1709, γ ) 0.0049)
achieved average unsigned and rms errors of 1.03 and
1.16 kcal/mol between ∆Gcalc and ∆Gexpt, respectively.
Figure 6 demonstrates how well the solvation-docking
model predicts the binding free energies for 12 molecules
in the training set. The slope was 0.96 with the intercept
being set to 0.0 (since we intended to make the solvation
docking scores reproduce the experimental binding free
energies). The regression coefficient and standard de-
viation were 0.67 and 1.2 kcal/mol, respectively.

Solvation docking was performed for all the hits that
survived the multiple-conformation rigid docking, and
then the binding free energies were predicted with the
above solvation docking model. A total of 3360 com-
pounds successfully passed this filter with a threshold
of -8.8 kcal/mol. As for the known NNRTIs in the
control test, 22 out of the 28 rigid docking hits success-
fully passed the solvation docking filter. The HR and
EF were estimated as 79% and 3.74, respectively. The
solvation docking scores for all the known NNRTIs as
well as the 30 selected promising hits are listed in
Tables 3 and 4. A plot of the experimental binding free
energies versus solvation docking scores is shown in
Figure 7 for the 22 known NNRTIs that passed the
solvation docking filter. The standard deviation was
1.6 kcal/mol and the regression coefficient was 0.4. The
slope was 0.9778 with the intercept being set to 0.0. The
regression coefficient, although significantly better than
that of rigid docking, is still very low, as the flexibility
of the receptor was not considered in this filter.

Fourteen out of the 19 known NNRTIs for which
crystal structures of HIV-1 RT complexes exist passed
the solvation docking filter. The rmsd values of the
compounds docked to the crystal structures are listed
in Table 5. The average and root-mean-square deviation
of the rmsd for the 14 inhibitors were 2.7 and 3.0 Å,
respectively. This performance is slightly better than
that of rigid docking.

Compared to MM-GB/SA, MM-PB/SA, and LIE,
solvation docking is a much faster approach, due to its
simpler sampling protocol (the flexibility of the receptor
is neglected). To apply this filter, one needs to find or

build up a proper model. Unfortunately, just like LIE,
most solvation docking models suffer from poor trans-
ferability. Solvation docking consumes a little more time
than rigid docking, and the typical process time for one
conformation was 20 s on a single-process SGI Origin
(R10000) in this work.

Filter IV;MM-PB/SA. The last filter, MM-PB/SA,
is the most time and resource demanding step in our
lead discovery strategy. We thus only performed
MM-PB/SA for the 22 known NNRTIs in the control
set and the 30 most promising hits that passed the
solvation docking filter. However, we do believe that it
is practical to perform MM-PB/SA for up to 5000
compounds within a reasonable time frame for a phar-
maceutical company. In Tables 3 and 4, the MM-PB/
SA binding free energies for the known NNRTIs and
the 30 promising compounds, respectively, are listed.
Sixteen out of the 22 known NNRTIs have MM-PB/
SA binding affinities better than -6.8 kcal/mol, which
corresponds to an IC50 value of 10 µM. Figure 8 is a plot
of MM-PB/SA versus experimental binding free ener-
gies for the 20 NNRTIs that have MM-PB/SA scores

Figure 6. The performance of a solvation docking model
derived from the 12 known NNRTIs that achieved both good
docked structures (rmsd < 3.0 Å) and good docking scores
(<-24.5 kcal/mol). The slope was 0.96 with the intercept being
set to 0.0. The regression coefficient and standard deviation
were 0.67 and 1.2 kcal/ mol, respectively.

Figure 7. Plot of the experimental binding free energies
versus solvation docking scores for the 22 compounds that
passed the solvation docking filter. The slope was 0.98 with
the intercept being set to 0.0. The regression coefficient and
standard deviation were 0.42 and 1.6 kcal/mol, respectively.

Figure 8. Plot of the experimental versus MM-PB/SA
binding free energies for the 20 compounds that had their
MM-PB/SA scores better than -6.0 kcal/mol. The slope was
0.95 with the intercept being set to 0.0. The regression
coefficient and standard deviation were 0.74 and 2.2 kcal/mol,
respectively.

2440 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 7 Wang et al.



better than -6.0 kcal/mol. The slope was 0.95 with an
intercept of 0.0. The regression coefficient and standard
deviation were 0.74 and 2.2 kcal/mol, respectively. The
regression coefficient was significantly better than those
of the rigid docking and solvation docking filters. The
individual energetic terms (∆Evdw, ∆Eelec, ∆Gpolar, and
∆GSASr) of MM-PB/SA are listed in Table 7 for the
known NNRTIs that passed the rigid docking and
solvation docking filters. Ten promising hits out of 30
had MM-PB/SA scores better than -6.8 kcal/mol.
HIT15, the best one, had a binding free energy of
-17.7 kcal/mol, which has a good chance to be a real
HIV-1 non-nucleoside reverse transcriptase inhibitor.

In summary, 16 out of the 37 known NNRTIs sur-
vived all the filters, and the overall hit rate of the whole
procedure was 41%, assuming that the hit rate of the
first filter was 95%. The hit rate and the enrichment
factor of the first three filters were 56% and 25,
respectively. An enrichment factor of 25 implies that
the probability of finding a real inhibitor randomly from
the hits of the first three filters is 25-fold higher than
from the whole database.

Future Development. A cartoon representation of
our hierarchical multiple-filter database screening strat-
egy is shown in Figure 9. In this figure, hearts stand
for compounds, with active compounds colored in red
and inactive colored in blue. From the top to the bottom,
the active compounds are gradually condensed. It is
notable that the numbers of red and blue hearts do not
directly correspond to the real numbers of active and
inactive compounds in a database. It should also be
pointed out that the above protocol can certainly be
modified to meet an individual’s special needs. For
example, one may first apply a set of ADMET/PK
models to screen the whole database to eliminate
compounds with bad ADMET/PK properties. For the
last filter, MM-PB/SA may be replaced with a less
computer resource demanding GB/SA model. Recently,
we developed a solvation model52 based on weighted

solvent accessible surface area (WSAS), which is a much
more efficient method compared to MM-PB/SA or
MM-GB/SA. This solvation model has also demon-
strated relatively good performance in free energy
calculations. One may substitute MM-WSAS for the
solvation docking and MM-PB/SA in some situations.

As pointed out previously,9 although MM-PB/SA does
not have as solid a theoretical basis as FEP and TI, it
is computationally more efficient than FEP and TI.
Moreover, compared to other free energy calculation
methods including LIE and solvation docking, MM-PB/
SA is more promising under some circumstances, be-
cause it does not require a training set to derive
empirical parameters in the first place, while LIE and
solvation docking do. Therefore, when combining

Table 7. A List of the Individual Energy Terms of MM-PB/SA for the Known HIV-1 NNRTIs That Passed the Rigid Docking and
Solvation Docking Filtersa

∆Egas ∆Gsolvation (PB/SA)

no.
compd
abbrev ∆Evdw ∆Eelec ∆Gpolar ∆Gnonpolar ∆GMM-PB/SA T∆S ∆Gcalc ∆Gexpt

1 AAA -48.6 -7.3 38.8 -5.6 -22.7 15.5 -7.2 -8.7
2 AAP -48.4 -15.6 42.6 -5.4 -26.7 19.5 -7.2 -9.5
3 EFZ -43.4 -11.5 32.7 -4.6 -26.8 13.6 -13.2 -11.6
4 HBY -48.5 -12.6 39.0 -5.3 -27.4 17.8 -9.6 -11.2
5 HEF -47.1 -16.3 43.6 -4.6 -24.5 17.0 -7.5 -7.0
6 NEV -45.7 -5.1 33.4 -4.3 -21.7 14.9 -6.8 -9.1
7 TB9 -48.4 -24.1 50.2 -5.0 -27.3 15.7 -11.6 -10.6
8 THI -44.5 -4.4 31.7 -3.5 -20.8 13.1 -7.6 -10.6
9b U05 -46.9 -4.6 37.6 -4.6 -13.9 15.1 -3.4 -8.7
10 UC1 -55.1 -25.3 56.9 -5.6 -29.1 17.2 -11.8 -11.0
11 UC2 -54.0 -8.4 38.6 -5.6 -29.4 17.5 -11.2 -9.3
12 UC3 -42.9 -16.5 41.2 -5.3 -23.6 16.3 -7.2 -10.3
13 UC4 -45.5 -10.4 36.0 -5.3 -25.2 15.5 -9.7 -10.1
14 UKC -48.8 -10.4 35.8 -5.2 -28.7 17.5 -11.2 -9.2
15b DAB -50.0 -8.5 41.3 -5.2 -22.4 15.9 -6.5 -7.3
16 D61 -45.7 -16.3 36.9 -4.5 -29.6 14.8 -14.8 -12.9
17 D83 -45.7 -13.7 35.2 -4.4 -28.6 14.2 -14.4 -12.8
18b EEB -46.9 -4.5 40.4 -5.1 -16.1 19.2 3.0 -10.1
19b HES -45.4 -16.3 45.1 -4.2 -20.8 14.7 -6.0 -7.9
20 PE2 -47.5 -2.3 34.5 -4.9 -20.2 12.8 -7.3 -10.0
21b PE4 -41.1 -3.5 36.9 -3.6 -11.2 14.8 3.5 -8.0
22b R14 -43.1 -10.3 41.6 -4.3 -16.1 18.2 2.2 -5.7
a All energy terms are in kcal/mol. b Compounds that failed to pass the MM-PB/SA filter (-6.8 kcal/mol).

Figure 9. Representation of the hierarchical database screen-
ing strategy using multiple filters. From the most efficient to
the most reliable, these filters are pharmacophore models,
multiple-conformation rigid docking, solvation docking, and
MM-PB/SA. The hits that survived all the four filters may
be subjected to testing their biological activities. In this figure,
hearts stand for compounds, and active compounds are colored
red and inactive blue. From the top to the bottom, the active
compounds are condensed gradually. The numbers of red and
blue hearts do not directly correspond to the real numbers of
active and inactive compounds in practical database searches.
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MM-PB/SA with molecular docking and molecular
dynamics simulations, one could reliably model a pro-
tein and DNA complex a priori. This is why MM-PB/
SA was applied as the last filter in our lead exploring
strategy. In this work, for each inhibitor, the MD
simulation required 4 h of CPU time, and the subse-
quent MM-PB/SA analysis and entropy calculations
needed another 2 h on the SGI Origin (R10000). If one
has to process 3500 molecules, it would take roughly 1
month with a 30-processer SGI Origin (R10000). It is
shown that this step still requires massive amounts of
computational resources. Fortunately, most new gen-
eration computers are much faster than the one we
used. It is expected that one may conduct MM-PB/SA
analysis for 3500 molecules within 1 week.

Being a bottleneck of this lead exploring strategy, it
is important for us to make MM-PB/SA more efficient.
Actions may be taken in the following two aspects. First
of all, one may run MD simulations using implicit water
models, such as in GB/SA and PB/SA, instead of an
explicit water model. GB-MD has been available in
AMBER since its sixth version. Although GB-MD may
not sample conformational space as well as MD with
explicit solvents, it can save a lot of CPU hours not only
on sampling but also on postanalysis. Second, a new
algorithm is being developed to calculate the entropy
accurately and efficiently. With the proposed new
improvements, we believe our hierarchical multiple-
filter drug lead exploring strategy will be more efficient
and will have broader applications in drug discovery.

Conclusions

In this work, a hierarchical multiple-filter database
screening strategy has been successfully applied to
explore the drug leads for the HIV-1 reverse tran-
scriptase. Starting from a refined ACD database that
had 150 000 compounds, the first filter, a pharma-
cophore model, efficiently reduced the compound num-
ber to 40 000. The HR and EF are estimated at 95%
and 3.56, respectively. In the subsequent rigid docking
filter, the 40 000 hits were further reduced to 16 000
with HR and EF of 76% and 1.89, respectively. The third
filter, solvation docking, reduced the compound number
from 16 000 to 3360 with HR and EF of 79% and 3.74,
respectively. In the last step, molecular dynamics
simulations combined with MM-PB/SA were performed
for the 30 most promising solvation docking hits. Ten
out of the 30 molecules achieved MM-PB/SA binding
free energies better than -6.8 kcal/mol, and HIT15, the
best one, had a binding free energy of -17.0 kcal/mol.
The EF for the first three steps and the HR of the whole
procedure were 25 and 41%, respectively. Although
MM-PB/SA calculations were not calculated for all the
3360 hits of the solvation docking filter, it has been
demonstrated that it is possible for pharmaceutical
companies, equipped with better computational re-
sources, to perform these calculations in a reasonable
time frame.

For the 19 known HIV-1 NNRTIs that have crystal
structures of HIV-1 RT complexes, the docked and MD
structures were superimposed on the crystal ones and
the root-mean-square deviations (rmsd) were 3.2, 2.7,
and 2.5 Å for the rigid docking, solvation docking, and
MD simulations, respectively. This was an encouraging

performance, given that all the docking studies were
based on one single-crystal structure of HIV-1 RT/TBO
(1uwb), rather than the more desirable individual
crystal complexes.

In conclusion, our hierarchical multiple-filter data-
base searching strategy achieved not only high efficiency
but also high reliability. It is an attractive strategy in
drug lead exploration.
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